
 [Singh, 1(6): Aug., 2012]

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

IJESRT
INTERNATIONAL JOURNA

A Review

Govind Ballabh P

Grid computing is a term referring to the association of computer assets from multiple administrative domains to
This paper presents various features of aspect oriented programming and tries to analyze the effect of aspect oriented
methodology on c and java domain respectively called ASPECTC and ASPECTJ .We also include the various
security crosscutting concerns with the implementation approaches of aspect oriented approach that has been used
for various modifications .

Keywords: Grid computing, AspectsJ.

Introduction
Object oriented programming is widely used in
present scenario and this approach is properly
involved in the whole flow of software tools . Xerox
PARC effort in the development of programming
methods has made it possible the origin and
development of programming named aspect oriented
programming that overcomes the situations where
object oriented programming get failed.

There are various concerns at various levels one of
these concern is core concern and other are system
level concerns , object oriented programming tries
to synchronize this situation but to localize these all
concerns becomes very heavy and complex ta
these all concern collectively called as security
concern includes logging , security and other issues
associated .

OOP added a new chapter of encapsulation and
inheritance similarly AOP give its contribution to
solve and deal with various issue
crosscutting .

ASPECTJ , HYPERJ ,DJ , ASPECTC all these are
aspect oriented extension . ASPECTJ is one of the
most popular extension of AOP so java program is
appropriate AspectJ program .

This paper is divided in such a way that it s
formal introduction of Aspect oriented
programming and traverse the complete path that
includes the other essential issues of crosscutting and
at last we try to give merits and demerits of AOP .

 ISSN: 2277

International Journal of Engineering Sciences & Research Technology

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

A Review - Aspect-Oriented Programming
Ankur Singh Bist

Govind Ballabh Pant University of Agriculture & Technology, India
ankur1990bist@gmail.com

Abstract
Grid computing is a term referring to the association of computer assets from multiple administrative domains to
This paper presents various features of aspect oriented programming and tries to analyze the effect of aspect oriented
methodology on c and java domain respectively called ASPECTC and ASPECTJ .We also include the various

the implementation approaches of aspect oriented approach that has been used

Object oriented programming is widely used in
present scenario and this approach is properly
involved in the whole flow of software tools . Xerox

effort in the development of programming
methods has made it possible the origin and
development of programming named aspect oriented
programming that overcomes the situations where
object oriented programming get failed.

There are various concerns at various levels one of
these concern is core concern and other are system
level concerns , object oriented programming tries
to synchronize this situation but to localize these all
concerns becomes very heavy and complex task ,
these all concern collectively called as security
concern includes logging , security and other issues

OOP added a new chapter of encapsulation and
inheritance similarly AOP give its contribution to
solve and deal with various issues related to

ASPECTJ , HYPERJ ,DJ , ASPECTC all these are
aspect oriented extension . ASPECTJ is one of the
most popular extension of AOP so java program is

This paper is divided in such a way that it starts with
formal introduction of Aspect oriented
programming and traverse the complete path that
includes the other essential issues of crosscutting and
at last we try to give merits and demerits of AOP .

AspectsJ
AOP has several direct antecedents: reflecti
metaobject protocols, subject- oriented programming
, Composition Filters and Adaptive Programming.
Gregor Kiczales and colleagues at Xerox PARC
developed the explicit concept of AOP, and followed
this with the AspectJ AOP extension to Java. IBM's
research team pursued a tool approach over a
language design approach and in 2001 proposed
Hyper/J and the Concern Manipulation Environment ,
which have not seen wide usage. EmacsLisp
changelog added AOP related code in version 19.28.
The examples in this article use AspectJ as it is the
most widely known AOP language.

The Microsoft Transaction Server
the first major application of AOP followed by
Enterprise JavaBean .

ASPECTJ is a small and well-
to Java . Java is a general-purpose OO language
and it uses freely available implementation
utilizes compiler that is O
includes IDE support like emacs, JBuilder 3.5,
Forte 4J[1] .

ASPECTJ includes following attributes

1. Aspects
An aspect is a module for handling crosscutting
concerns .Aspects are defined in terms of pointcuts,
advice, and introduction .Aspects are reusable and
inheritable .

2. Joinpoints – Points of execution of java

program. it further includes

ISSN: 2277-9655

International Journal of Engineering Sciences & Research Technology[357-360]

ENCES & RESEARCH

Grid computing is a term referring to the association of computer assets from multiple administrative domains to
This paper presents various features of aspect oriented programming and tries to analyze the effect of aspect oriented
methodology on c and java domain respectively called ASPECTC and ASPECTJ .We also include the various

the implementation approaches of aspect oriented approach that has been used

AOP has several direct antecedents: reflection and
oriented programming

, Composition Filters and Adaptive Programming.
Gregor Kiczales and colleagues at Xerox PARC
developed the explicit concept of AOP, and followed
this with the AspectJ AOP extension to Java. IBM's
research team pursued a tool approach over a
language design approach and in 2001 proposed
Hyper/J and the Concern Manipulation Environment ,
which have not seen wide usage. EmacsLisp
changelog added AOP related code in version 19.28.

article use AspectJ as it is the
most widely known AOP language.

Microsoft Transaction Server is considered to be
the first major application of AOP followed by

-integrated extension
purpose OO language

and it uses freely available implementation
utilizes compiler that is Open Source it also
includes IDE support like emacs, JBuilder 3.5,

ASPECTJ includes following attributes-

An aspect is a module for handling crosscutting
concerns .Aspects are defined in terms of pointcuts,

tion .Aspects are reusable and

Points of execution of java
program. it further includes ----

 [Singh, 1(6): Aug., 2012]

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

 . constructor call , method call , exception handler
execution , Exception handler execution .

 Fig. 1

3. Pointcuts

 A pointcut is a group of join points .

4. Advice
Advice is code that is executed at a pointcut .
Introduction modifies the members of a class and
the relationships between classes .

Join Point Models
The advice-related component of an aspect
language explains a join point model (JPM). A JPM
explains three things [2]:

1. When the advice can execute
called join points because they are points in
a running program where add
behavior can be joined efficiently . A join
point requires to be addressable and
understandable by an ordinary programmer
to be useful. It should also be stable across
inconsequential program changes in order
for an aspect to be stable across such
changes. Many Aspect
programming implementations support

 Fig 2 [1]

 ISSN: 2277

International Journal of Engineering Sciences & Research Technology

constructor call , method call , exception handler
execution , Exception handler execution .

A pointcut is a group of join points .

Advice is code that is executed at a pointcut .
Introduction modifies the members of a class and

aspect-oriented
point model (JPM). A JPM

When the advice can execute . These are
because they are points in

a running program where additional
efficiently . A join

to be addressable and
understandable by an ordinary programmer
to be useful. It should also be stable across
inconsequential program changes in order

le across such
changes. Many Aspect oriented

implementations support

method executions and field references as
join points.

2. A method to specify (or
points, called pointcuts. Pointcuts identifies
whether a given join point matches. Most
beneficial pointcut language
like the base language (for example,
uses Java signatures) and promotes
through naming and combination.

3. A means of specifying code to execute
join point. AspectJ calls
execute it before, after, and aro
points. Some implementations also promotes
things like defining a method in an aspect on
another class.

Join-point models can be compared based on the join
points exposed, how join points are specified, the
operations permitted at the join points,
structural enhancements that can be expressed.

Join-Point Model of AspectJ

• The join points in AspectJ include method
or constructor call or execution, the
initialization of a class or object, field read
and write access, exception handlers, etc.
They do not include loops, super calls,
throws clauses, multiple statements, etc

• Pointcuts are specified by combinations of
primitive pointcut designators
"Kinded" PCDs match a particular kind of
join point (e.g., method execution) and tend
to take as input a Java-
such pointcut looks like this:

 execution(* set*(*))

This pointcut recognizes a method
point, if the method name starts with "
is exactly one argument of any type.

"Dynamic" PCDs check runtime types and bind
variables. For example

 this(Point)

This pointcut recognizes when the currently
executing object is an instance of class
that the unqualified name of a class can be used via
Java's normal type lookup.

"Scope" PCDs limit the lexical scope of the join
point. For example:

 within(com.company.*)

ISSN: 2277-9655

International Journal of Engineering Sciences & Research Technology[357-360]

method executions and field references as

to specify (or quantify) join
. Pointcuts identifies

join point matches. Most
pointcut languages use a syntax

like the base language (for example, AspectJ
uses Java signatures) and promotes reuse
through naming and combination.

means of specifying code to execute at a
 this advice, and can

it before, after, and around join
ome implementations also promotes

things like defining a method in an aspect on

point models can be compared based on the join
points exposed, how join points are specified, the
operations permitted at the join points, and the
structural enhancements that can be expressed.

of AspectJ
The join points in AspectJ include method
or constructor call or execution, the
initialization of a class or object, field read
and write access, exception handlers, etc.

hey do not include loops, super calls,
throws clauses, multiple statements, etc [2].
Pointcuts are specified by combinations of
primitive pointcut designators (PCDs).
"Kinded" PCDs match a particular kind of
join point (e.g., method execution) and tend

-like signature. One
such pointcut looks like this:

a method-execution join
point, if the method name starts with "set" and there
is exactly one argument of any type.

PCDs check runtime types and bind

when the currently
executing object is an instance of class Point. Note
that the unqualified name of a class can be used via

e" PCDs limit the lexical scope of the join

 [Singh, 1(6): Aug., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[357-360]

This pointcut recognizes any join point in any type in
the com.company package. The * is one form of the
wildcards that can be used to match many things with
one signature.

Pointcuts can be composed and named for reuse. For
example
pointcut set() : execution(* set*(*)) && this(Point)
&& within(com.company.*);
This pointcut recognizes a method-execution join
point, if the method name starts with "set" and this is
an instance of type Point in the com.company
package. It can be referred to using the name "set()".

• Advice specifies to run at (before, after, or
around) a join point (specified with a
pointcut) certain code (specified like code in
a method). The AOP runtime invokes
Advice automatically when the pointcut
recognizes the join point. For example:

after() : set() {
 Display.update();
}

This effectively specifies: "if the set()
pointcut recognizes the join point, run the
code Display.update() after the join point
completes."

Other Potential Join Point Models
There are many other kinds of JPMs. All advice
languages can be explained in terms of their JPM.
For example, a hypothetical aspect language for
UML may have the following JPM:

• Join points are all model elements.
• Pointcuts are some boolean expression

combining the model elements.
• The means of affect at these points are a

visualization of all the matched join points.

Inter-Type Declarations
Inter-type declarations provide a way to express
crosscutting concerns affecting the structure of
modules. Also known as open classes, this enables
programmers to declare in one place members or
parents of another class, typically in order to combine
all the code related to a concern in one aspect. For
example, if a programmer implemented the
crosscutting display-update concern using visitors
instead, an inter-type declaration using the visitor
pattern might look like this in AspectJ:
 aspect Display Update {
 void Point. acceptVisitor (Visitor v) {
 v.visit(this); } // other crosscutting code...
 }

This code snippet adds the acceptVisitor method to
the Point class.

It is a requirement that any structural additions be
compatible with the original class, so that clients of
the existing class continue to operate, unless the AOP
implementation can expect to control all clients at all
times.

Implementation
AOP programs can make change to other programs in
two different ways, depending on the underlying
languages and environments:

1. a combined program is produced, valid in
the original language and indistinguishable
from an simple program to the ultimate
interpreter

2. the ultimate interpreter or environment is
updated to understand and implement AOP
features.

The difficulty of varying environments means most
implementations produce compatible combination of
programs through a process known as weaving . It is
a special case of program transformation . An aspect
weaver reads the aspect-oriented code and produces
appropriate object-oriented code with the aspects
integrated. The same AOP language can be
implemented through a variety of weaving methods,
so the semantics of a language should never be
understood in terms of the weaving implementation.
Only the speed of an implementation and its ease of
deployment are fluctuated by which method of
combination is used

Fig 3

 [Singh, 1(6): Aug., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[357-360]

Aspects
RUN TIME VERIFICATION AND Aspect oriented
programming have the common purpose of
monitoring program execution against temporal files.
A monitored program is instrumented which is
obtained in with various packages like source code
instrumentation tools cil for c , to drive monitors.
State machine based monitoring system such as
RMOR for c get developed ,it is a extension to
RCAT . ASPECTC with state machines inspired by
rmor resulting in XSPEC language x for crosscutting
have support of aspect oriented programming , spec
used for specification . Testing and fault protection
are some functional activities of these framework[3].

• According to Klaus Havelund and Eric Van
Wyk , there are following requirement for
monitoring the execution of c program
against specification :-Lexical specification
language

• State machines
• Temporal languages
• Programs as specifications
• Aspect oriented programming
• Domain specific monitoring

Klaus Havelund and Eric Van Wyk also explained
the design of XSPEC , programming a monitor in
ASPECTC ,RMOR, XSPEC with implementation of
Extensible xspec .
Collectively it can be said that XSPEC can be used as
a general and relevant tool for aspect oriented
programming it also glows for purpose of run time
verification.

Quantification & Obliviousness
Robert E. Filman and Daniel P. Friedman , tried to
explain the question what makes a language Aop ?

The two factors Quantification and obliviousness are
found to be necessary ingredients for aop .

Quantified program statement have their effect on
many loci in the certain code .oblivious programmers
do not require additional effort to make aop
mechanism work. Aop can be stated as the union of
quantifications handled by oblivious programmers.
Quantification have static and dynamic subtypes that
further includes their specifications . As a summary it
can be stated that aop is not about because oblivious
quantification is independent of object oriented
concepts and also aop is not beneficial for singletons.
More oblivious in system make the AOP better.

Seonah Lee , focussed on the capability of aspect
oriented programming as a reverse engineering tool

due to its tracing capability . He also explained the
modification of reflection model with aspect .

Benefits and Drawbacks of AOP

• Aop solved the code tangling and various
crosscutting concern but it is not tested in
planned way .

• Dima AlHadidi , Nadia Belblidia , Mourad
explained some possible extension for
aspectj shortcomings such as : Predicted
control flow pointcut ,dataflow pointcut
,loop pointcut ,pattern matching wildcard
,type pattern modifier s,local variable get
and set and synchronized block join point
[4] .

Conclusion
AOP introduces a different and efficient way of
programming and will be used in programming
paradigms .rule based framework for implementing
state machine and logic are still to be developed
efficiently. More flexibility of Aop in different
environment will make it more widely used and
popular in near future .

References

[1] Gregor Kiczales at Xerox Parc aspect
oriented programming concepts .

[2] www.wikipedia.com.
[3] Klaus Havelund and Eric Van Wyk ,

modelling with ASPECTC .
[4] Robert E. Filman and Daniel P. Friedman ,

Quantification and obliviousness in
ASPECT oriented .

